4,519 research outputs found

    Definition study for temperature control in advanced protein crystal growth

    Get PDF
    Some of the technical requirements for an expedient application of temperature control to advanced protein crystal growth activities are defined. Lysozome was used to study the effects of temperature ramping and temperature gradients for nucleation/dissolution and consecutive growth of sizable crystals and, to determine a prototype temperature program. The solubility study was conducted using equine serum albumin (ESA) which is an extremely stable, clinically important protein due to its capability to bind and transport many different small ions and molecules

    Nucleation and growth control in protein crystallization

    Get PDF
    The five topics summarized in this final report are as follows: (1) a technique for the expedient, semi-automated determination of protein solubilities as a function of temperature and application of this technique to proteins other than lysozyme; (2) a small solution cell with adjustable temperature gradients for the growth of proteins at a predetermined location through temperature programming; (3) a microscopy system with image storage and processing capability for high resolution optical studies of temperature controlled protein growth and etching kinetics; (4) growth experiments with lysozyme in thermosyphon flow ; and (5) a mathematical model for the evolution of evaporation/diffusion induced concentration gradients in the hanging drop protein crystallization technique

    Temperature and Functional Traits Influence Differences in Nitrogen Uptake Capacity Between Native and Invasive Grasses

    Get PDF
    Performance differences between native and exotic invasive plants are often considered static, but invasive grasses may achieve growth advantages in western North America shrublands and steppe under only optimal growing conditions. We examine differences in N uptake and several morphological variables that influence uptake at temperatures between 5 and 25 C. We contrast two native perennial grasses in western North America: Elymus elymoides and Pseudoroegneria spicata; two invasive annual grasses: Bromus tectorum and Taeniatherum caputmedusae; and one highly selected non-native perennial grass: Agropyron cristatum. The influence of temperature on N uptake is poorly characterized, yet these invasive annual grasses are known to germinate in warm soils in the autumn, and both experience cool soils during the short growing season following snowmelt in the spring. To further explore the influence of temperature on the correlation between morphological variables and N uptake, our data are applied to a previously published path model and one proposed here. Differences in N uptake between native and invasive grasses were small at the lowest temperature, but were large at the highest temperature. At lower temperatures, uptake of N by annuals and perennials was correlated with leaf N and mass. At higher temperatures, uptake by annuals was correlated only with these leaf traits, but uptake by perennials was correlated with these leaf traits as well as root N and mass. Consequently, our results imply that annual grasses face fewer morphological constraints on N uptake than perennial grasses, and annual grasses may gain further advantage in warmer temperature conditions or during more frequent warm periods

    Morphological and Physiological Traits Account for Similar Nitrate Uptake by Crested Wheatgrass and Cheatgrass

    Get PDF
    Millions of hectares throughout the Intermountain West are either dominated or threatened by the invasive annual grass Bromus tectorum (cheatgrass). This invasion is largely linked to disturbance and few regions appear immune. Disturbance liberates resources in a community and cheatgrass appears exceptionally able to capitalize on these resources. One species, however, is consistently competitive with cheatgrass. Agropyron cristatum (crested wheatgrass), an improved plant material developed from several populations in central Asia, is drought resistant, grazing tolerant, and largely excludes cheatgrass in stands established within the Great Basin. While previous studies document high resource uptake ability by crested wheatgrass, it remains unknown if high uptake in this species is due to morphological or physiological adaptation. We examined N uptake and tissue morphology of four grasses common in the Intermountain West, including cheatgrass and crested wheatgrass. We also included two native grasses, Pseudoroegneria spicata (bluebunch wheatgrass) and Elymus elymoides (bottlebrush squirreltail). We observed similar rates of N uptake by cheatgrass and crested wheatgrass and their uptake was greater than the native perennial species. A multivariate analysis suggests that, of the three perennial grasses examined here, crested wheatgrass is morphologically most similar to cheatgrass, but that morphology only accounts for 57 percent of the variation in N uptake capacity among species. Consequently, physiological traits such as induction of N uptake or N efflux likely play a role in the ability of crested wheatgrass to achieve N uptake rates similar to cheatgrass

    Road Dust Correlated with Decreased Reproduction of the Endangered Utah Shrub Hesperidanthus suffrutescens

    Get PDF
    Roads associated with energy development have fragmented much of the Uinta Basin, the Colorado Plateau in general, and other areas of western North America. Beyond reducing available habitat, spreading exotic species, and creating barriers to dispersal, unpaved roads also increase dust loads on plants and pollinators, which may reduce plant growth and reproduction. We studied the effects of an unpaved road on reproduction of an endangered Utah endemic shrub. We measured the size and reproductive output of 156 plants and the dust deposition in plots at increasing distances from the road. We also hand outcrossed 240 flowers from 80 plants to help determine if any reduced reproduction was due to pre- or postpollination mechanisms. Additionally, we experimentally dusted 3 leaves on 30 plants (n = 90) and measured stomatal conductance pre-dust and post-dust. We also dusted 3 flowers on 10 plants (n = 30) prior to hand pollination and measured fruit set. Generalized linear mixed models were used to examine the relationship between reproduction and dust deposition. When controlling for plant size and distance from the road, fruit set was negatively correlated with increasing levels of dust deposition (F1, 15 = 5.26, P = 0.036). The number of seeds per plant, mean plant seed weight, and the proportion of hand-pollinated flowers that set fruit were also negatively correlated with dust, although not significantly. Dusting significantly reduced stomatal conductance (F1, 58 = 87.56, P \u3c 0.001). Eighty percent of hand pollinated flowers (24 of 30) set fruit after dusting. These results demonstrate that road dust reduces H. suffrutescens reproduction, although the mechanisms are not clear. Although dust negatively affected physiological processes, hand-pollination results suggest that dust might be disrupting pollination. This study documents the effects of road dust on the reproduction of an endangered shrub in Utah\u27s Uinta Basin and highlights the need for further research into the effects of roads and dust on nearby plants

    A New Perspective on Trait Differences Between Native and Invasive Exotic Plants

    Get PDF
    Functional differences between native and exotic species potentially constitute one factor responsible for plant invasion. Differences in trait values between native and exotic invasive species, however, should not be considered fixed and may depend on the context of the comparison. Furthermore, the magnitude of difference between native and exotic species necessary to trigger invasion is unknown. We propose a criterion that differences in trait values between a native and exotic invasive species must be greater than differences between co-occurring natives for this difference to be ecologically meaningful and a contributing factor to plant invasion. We used a meta-analysis to quantify the difference between native and exotic invasive species for various traits examined in previous studies and compared this value to differences among native species reported in the same studies. The effect size between native and exotic invasive species was similar to the effect size between co-occurring natives except for studies conducted in the field; in most instances, our criterion was not met although overall differences between native and exotic invasive species were slightly larger than differences between natives. Consequently, trait differences may be important in certain contexts, but other mechanisms of invasion are likely more important in most cases. We suggest that using trait values as predictors of invasion will be challenging

    Soil and Vegetation Survey of Antelope Pasture, Curlew Grazing Allotment, Oneida County, ID

    Get PDF
    Antelope Pasture, located in the Black Pine Valley of Oneida County, Idaho, is a 1500-acre portion of the Curlew Grazing Allotment, managed by the Pocatello Field Office of the BLM (Figure 1). The pasture is heavily invaded with exotic annuals such as cheatgrass (Bromus tectorum), halogeton (Halogeton glomeratus), and clasping pepperweed (Lepidium perfoliatum), and grazing is temporarily discontinued. Land-use history of the pasture includes livestock grazing, possible homesteading and cultivation of Agropyron cristatum (crested wheatgrass)

    Seedling Emergence Patterns of Six Restoration Species in Soils From Two Big Sagebrush Plant Communities

    Get PDF
    Despite the critical need to improve degraded herbaceous understory conditions in many semiarid ecosystems, the influence of soil properties on seedling emergence of species seeded in shrubland plant communities is largely unexplored. We evaluated emergence patterns of 6 restoration species in soils from wyomingensis (i.e., Wyoming big sagebrush, Artemisia tridentata ssp. wyomingensis [Beetle & A. Young] S.L. Welsh) and vaseyana (i.e., mountain big sagebrush, A. t. ssp. vaseyana [Rydb.] Beetle) plant communities that differed in soil texture, soil organic matter content, and soil water-holding capacity. We conducted 2 separate experiments that regularly wetted soils to standardized soil water potentials (i.e., field capacity; −0.03 MPa) and allowed differences in evaporation to create distinct wet-dry watering pattern cycles over a 26–29 d period. Our objectives were to compare soil attributes of wyomingensis and vaseyana soils, evaluate whether emergence patterns of restoration species vary within these soils, and determine how these patterns are altered by soil water-content levels. We found differences in soil texture and organic matter between soils and thus soil water-holding capacity: finer-textured vaseyana soils held roughly twofold more water than coarse-textured wyomingensis soils. Seeds in vaseyana soils were exposed to fewer wet-dry cycles compared to wyomingensis soils because of the greater capacity of vaseyana soils to retain water. Restoration species also collectively exhibited greater emergence in vaseyana soils than in wyomingensis soils, yet emergence patterns were vastly different among species, and differences between soils became more pronounced under low soil water for only 2 species. We conclude that the manner in which soils and water uniquely influenced emergence patterns provides new insights into species suitability for restoration sites and how inherent soil differences may constrain seeding success
    • …
    corecore